另类老妇性BBWBBW,欧美搡BBBBB搡BBBBB,女BBBB槡BBBB槡BBBB,四川少妇BBW搡BBBB槡BBBB,凸凸凹BBWBBWBBWBBW,娇BBB搡BBBB揉BBBB,四川少妇搡BBW搡BBBB
北京理加聯(lián)合科技有限公司

LICA United Technology Limited

服務(wù)熱線: 13910499761 010-51292601
企業(yè)郵箱
應(yīng)用支持 Application Support
News 應(yīng)用支持

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

日期: 2019-03-19
瀏覽次數(shù): 256

M.K. Maid1*

, R.R. Deshmukh2

1*Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

2Department of CS and IT, Dr. B. A. M. U, Aurangabad, India

*Corresponding Author: mm915monali@gmail.com?

Available online at: www.ijcseonline.org?


Abstract— Remote Sensing has wide range of applications in many different fields. Remote Sensing has been found to be a valuable tool in evaluation, monitoring, and management of land, water and crop resources. The applications of remote sensing techniques in the field of agriculture are wide and varied ranging from crop identification, detection of disease on different crops & predicting grain yield of crops. Many remote sensing applications are devoted to the agricultural sector. The selected applications are put in the context of the global challenges the agricultural sector is facing: minimizing the environmental impact, while increasing production and productivity. The application of remote sensing in agriculture typically involves measuring reflectance of electromagnetic radiation in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1,300 nm), or middle-infrared (1,300 to 2,500 nm) ranges using spectrometers. This paper reviews the concept of hyperspectral remote sensing, use of remote sensing in terms of agriculture field, study of diseased wheat leaves using hyperspectral remote sensing.


Keywords—Remote Sensing, Wheat Leaf Rust, Vegetation Indices, ASD Fieldspec4 Spectroradiometer.

I. INTRODUCTION

Remote sensing refers to the activities of ?recording/observing/perceiving (sensing) objects or events at ?far away (remote) places. Remote sensing is a sub-field of ?geography. In modern usage, the term generally refers to the?use of aerial sensor technologies to detect and classify?objects on Earth (both on the surface, and in the atmosphere?and oceans) by means of propagated signals (e.g.?electromagnetic radiation) [1]. The electromagnetic?radiation is normally used as an information carrier in remote?sensing. The reflection of that energy by earth surface?materials is then measured to produce an image of the area?sensed. Generally, Remote sensing can be done on two types?of data namely imagery and non imagery. It can be done?using different kinds of remote sensing devices like ASD?fieldspec Spectroradiometer. Remote sensing have wide?range of applications in various fields, among which?Agriculture plays important role in our day to day life as not?only in india but in many countries agriculture is their?primary source of income and all human beings, animals and?many industries are dependent on agriculture field.?agriculture plays key macroeconomic roles in the?

industrialization of developing countries by relieving saving,?aggregate demand, fiscal, and foreign exchange constraints?on the industrial sector [2].

?In agriculture field winter wheat is one of the highest?yielding crops on the farm [3]. Different climatic factors and?disease symptoms affects the plant growth and it directly?results in yield of crop. Rust are among the most important?

fungal diseases of wheat worldwide [4]. There are three types of rust diseases in wheat crop: Strip Rust, Leaf Rust, Stem Rust.

Wheat rusts are caused by three related fungi [5]:?

? Stripe rust is caused by Puccinia striiformis f. sp. tritici.

? Leaf rust is caused by Puccinia triticina.

? Stem rust is caused by Puccinia graminis f. sp. tritici.

This paper reviews the study of wheat leaf rust (WLR) disease using hyperspectral analysis, different vegetation indices and spectral signatures can be used to estimate the features of diseased and healthy crop. In this review paper ASD Fieldspec4 Spectroradiometer is used for data collection of diseased wheat leaves and healthy wheat leaves. Using different vegetation indices (VIs) biophysical and biochemical properties of crop can be estimated.?

II. BASICS OF REMOTE SENSING

Hyperspectral remote sensing is used for over 100 years for?analysis of various objects and their chemical as well as?biological composition. But hyperspectral sensor offers an?alternate and nondestructive technique for analysis of?

physical and chemical properties of material. Remote sensing?of vegetation is mainly performed by obtaining the?electromagnetic wave reflectance information from canopies?using passive sensors. It is well known that the reflectance of?

light spectra from plants changes with plant type, water?content within tissues, and other intrinsic factors [6].

The reflectance from vegetation to the electromagnetic?spectrum (spectral reflectance or emission characteristics of?vegetation) is determined by chemical and morphological?characteristics of the surface of organs or leaves [7].?

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The main applications for remote sensing of vegetation are?based on the following light spectra: (i) the ultraviolet region?(UV), which goes from 10 to 380?nm; (ii) the visible spectra,?which are composed of the blue (450–495?nm), green?(495?570?nm), and red (620–750?nm) wavelength regions;?and (iii) the near and mid infrared band (850–1700?nm)[9,10].

III. HYPERSPECTRAL REMOTE SENSING IN?AGRICULTURE

Spectral data at the leaf and canopy scales have been utilized?to improve the plant disease detection techniques from?remotely sensed observations [11,12], where the visible and?infrared regions are more sensitive to disease development?[13]. The measured spectra can be utilized to early detection?of fungus disease. Moreover, the optimized narrow bands?vegetation indices were employed to discriminate various?disease of wheat [14].?

III.I Wheat Leaf Rust (WLR) Disease

The wheat rust is an important crop disease which has three?types, i.e., wheat yellow rust (WYR), wheat leaf rust (WLR),and wheat stem rust [15].?

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

WYR disease is identified by a single symptom which occurs?as a narrow yellow stripes parallel to nervures on the leaf,?whereas WLR disease is caused by the Puccinia triticina?fungus and illustrates numerous symptoms simultaneously in?various parts of an infected leaf [16]. The WLR symptoms?vary from leaf to leaf but it presents a yellow color earlier,?then its changes to orange and dark brown. Finally, the?disease symptom ends with the dry leaf [17].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

The effect of a disease on the pigments and structure of a?plant and the change in their spectral responses enable?spectroradiometry and remote sensing techniques to detect?plant disease effectively [18].

Crop disease can cause significant yield loss and reduction of?grain quality, which have a negative impact to food security?around the world [19].

IV. EXPERIMENTAL SETUP

IV.I Data Collection

Field spec 4 spectrometer (Analytical spectral device, ASD?Co. USA) shown in following figure having parameter?details in Table 1. Spectrum data export in ASCII text, then it?can analyze spectrum data with different software like ASD?View Spec Pro. Unscramble and MATLAB/ Octave [20].

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review


Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

V. VEGETATION INDICES FOR ESTIMATION OF WLRSYMPTOMS

Spectral data at different scales including leaf, canopy and?landscape-level have been widely used to improve precision?[21-24]. In recent years, researchers have studied various?spectral vegetation indices (SVIs) to detect different?

vegetation diseases [24-26]. Efficient use of spectral data in?detection of plant disease depends on the application. The?spectral regions from 400 to 700 and 700 to 1100 are mainly?influenced by leaf composition of pigments, structure, and?

water content [27]. The effect of a disease on the pigments?and structure of a plant and the change in their spectral?responses enable spectroradiometry and remote sensing?techniques to detect plant disease effectively [28]. There are?

indices derived from reflectance values at several?wavelengths that are able to detect and quantify the leaf?content substances such as chlorophyll, anthocyanin, and?water [29,30].

By using different types of vegetation indices estimation of?biochemical and biophysical properties of crops is possible.?Vegetation indices that are used by many researchers have?shown in following table [31].


Table 2. Different Vegetation Indices

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

Hyperspectral Analysis of Wheat Leaf Rust (WLR) Disease: A Review

VI. CONCLUSION

As Remote Sensing technology growing rapidly in?technological era and hyperspectral Remote sensing has wide?number of applications not only in agriculture field but also in?different industries which are dependent on agricultural area.?With the help of different spectral characteristics like spectral?signatures, vegetation indices, reflectance spectra we can use?it for discrimination of crops. It can be used to study the?severity of disease in crops, estimating the grain yield of?crops, analysis and growth modulation of crop.?


ACKNOWLEDGMENT?

This work is supported by Dept. of Computer Science and?Information Technology under the funds for Infrastructure?under science and Technology (DST-FIST) with sanction no.?SR/FST/ETI- 340/2013 to Dept. of Computer Science and?Information Technology, Dr. Babasaheb Ambedkar?Marathwada University, Aurangabad, Maharashtra, India.?The authors would like to thank Department and University?Authorities for providing the infrastructure and necessary?

support for carrying out the research.?


REFERENCES

[1] A. Chitradevi, S. Vijayalakshmi, “Random Forest for Multitemporal?and Multiscale Classification of Remote Sensing Satellite Imagery”,?International Journal of Computer Sciences and Engineering, Vol. 4,?Issue.2, pp.59-65, 2016.

[2] D. Souza, “Growth Complementarity Between Agriculture and?Industry: Evidence from a Panel of Developing Countries”, 2014.

[3] G. Boyle, “The Winter Wheat Guide”, Teagasc, pp. 21-40, 2016.

[4] S. N. Wegulo, “Rust Diseases of Wheat”, NebGuide, 2012.

[5] S. Markell, G. Milus, R. Cartwright, J. Hedge, “Rust Diseases of?Wheat”, Agriculture and natural resources.

[6] L. Chang, S. Peng-Sen, and Liu Shi-Rong, “A review of plant spectral?reflectance response to water physiological changes,” Chinese Journal?of Plant Ecology, vol. 40, no. 1, pp. 80–91, 2016.

[7] C. Zhang and J. M. Kovacs, “The application of small unmanned?aerial systems for precision agriculture: a review,” Precision?Agriculture, vol. 13, no. 6, pp. 693–712, 2012.

[8] J. B Campbell, “Introduction to Remote Sensing”, Taylor and Francis,?London, 1996.?

[9] H. R. Bin Abdul Rahim, M. Q. Bin Lokman, S. W. Harun, “Applied?light-side coupling with optimized spiral-patterned zinc oxide nanorod?coatings for multiple optical channel alcohol vapor sensing,” Journal?of Nanophotonics, vol. 10, no. 3, Article ID 036009, 2016.

[10] B. A. Cruden, D. Prabhu, and R. Martinez, “Absolute radiation?measurement in venus and mars entry conditions,” Journal of?Spacecraft and Rockets, vol. 49, no. 6, pp. 1069–1079, 2012.

[11] S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, “A review of?advanced techniques for detecting plant diseases,” Comput. Electron.?Agriculture, vol. 72, no. 1, pp. 1–13, 2010.

[12] C. Buschmann and E. Nagel, “In vivo spectroscopy and internal optics?of leaves as basis for remote sensing of vegetation,” Int. J. Remote?Sens, vol. 14, no. 4, pp. 711–722, 1993.

[13] N. K. Poona and R. Ismail, “Using Boruta-selected spectroscopic?wavebands for the asymptomatic detection of Fusarium circinatum?stress,” IEEE J. Select. Topics Appl. Earth Observations Remote?Sens., vol. 7, no. 9, pp. 3764–3772, 2014.

[14] W. Huang, “New optimized spectral indices for identifying and?monitoring winter wheat diseases,” IEEE J. Select. Topics Appl. Earth?Observations Remote Sens., vol. 7, no. 6, pp. 2516–2524, 2014.

[15] M. D. Bolton, J. A. Kolmer, and D. F. Garvin, “Wheat leaf rust caused?by Puccinia triticina,” Molecular Plant Pathology, vol. 9, no. 5, pp.?563–575, 2008.

[16] C. Robert, M.-O. Bancal, B. Ney, and C. Lannou, “Wheat leaf?photosynthesis loss due to leaf rust, with respect to lesion development?and leaf nitrogen status,” New Phytologist, vol. 165, no. 1, pp. 227–241, 2005.

[17] D. Ashourloo, H. Aghighi, A. A. Matkan, M. R. Mobasheri, and A. M.?Rad, “An Investigation Into Machine Learning Regression Techniques?For The Leaf Rust Disease Detection Using Hyperspectral?Measurement”, IEEE journal of selected topics in applied earth?observations and remote sensing, vol. 9, pp. 4344 – 4351, 2016.

[18] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J.H. Luo,?“Detecting powdery mildew of winter wheat using leaf level?hyperspectral measurements”, Comput. Electron. Agric, pp. 13–23,?2012.

[19] R. N. Strange, P. R. Scott, “Plant Disease: A threat to global food?security”, Annual reviews phytopathol, vol. 43, pp. 83-116, 2005.

[20] R. M. Misal, R. R. Deshmukh, “Application of Near-Infrared?Spectrometer in Agro-Food Analysis: A Review”, International Journal?of Computer Applications, Vol. 141 No.7, pp. 0975 – 8887, 2016.

[21] H.D Roelofsen, P. M. van Bodegom, L. Kooistra, , J. P.M. Witte,?“Trait estimation in herbaceous plant assemblages from in situ canopy?spectra” Remote Sens., Vol. 5, pp. 6323–6345, 2013.

[22] S. Delalieux, A. Auwerkerken, V.W. Verstraeten, B. Somers,?R.Valcke, S.Lhermitte, J. Keulemanss, P. Coppin, “Hyperspectral?reflectance and fluorescence imaging to detect scab induced stress in?Apple leaves”, Remote Sens, Vol. 1, pp. 858–874, 2009.

[23] U. Steiner, K. Bürling, E.C. Oerke, “Sensor use in plant protection”,?Gesunde Pflanz, Vol. 60, pp. 131–141, 2008.?

[24] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L.Yuan, J .Wang, “Using?in-situ hyperspectral data for detecting and discriminating yellow rust?disease from nutrient stresse”,Field Crops Res., Vol. 134, pp.165–174,2012.

[25] C.Hillnhütter, A.K. Mahlein, R.A. Sikora, E.C. Oerke, “Remote?sensing to detect plant stress induced by Heterodera schachtii and?Rhizoctonia solani in sugar beet fields”, Field Crops Res., Vol. 122,?pp. 70–77, 2011.?

[26] D. Moshou, C. Bravo, J. West, S. Wahlen, A. McCartney, H. Ramon,?“Automatic detection of ―yellow rust‖ in wheat using reflectance?measurements and neural networks”, Comput. Electron. Agric, Vol.?44, pp. 173–188, 2004.

[27] A.K. Mahlein, T. Rumpf, P. Welke, H.W. Dehne, L. Plümer, U.?Steiner, E.C. Oerke, “Development of spectral indices for detecting?and identifying plant diseases”, Remote Sens. Environ, Vol. 128, pp.?21–30, 2013.?

[28] J.C. Zhang, R.L. Pu, J.H.Wang, W.J. Huang, L. Yuan, J.H. Luo,?“Detecting powdery mildew of winter wheat using leaf level13–23, 2012.?

[29] A.A. Gitelson, Y.J. Kaufman, R. Stark, D. Rundquist, “Novel?algorithms for remote estimation of vegetation fraction”, Remote Sens.?Environ, Vol.80, pp. 76–87, 2002.?

[30] J. Penuelas, F. Baret, I. Filella, “Semiempirical indices to assess?carotenoids/chlorophyll a ratio from leaf spectral reflectance”,?Photosynthetica, Vol. 31, pp. 221–230, 1995.?

[31] P. V. Janse, R. R. Deshmukh, “Hyperspectal Remote Sensing for?Agriculture: A Review”, International Journal of Computer?Applications,Vol.172 No.7, pp. 0975 – 8887, 2017.

[32] A. R. Huete, B. K. Liu, L. Van, “A comparison of vegetation indices?over a global set of TM images for EOS-MODIS”, Remote Sensing of?Environment, Vol. 59, pp. 440-451, 1997.?

[33] J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, “Monitoring?vegetation systems in the great plains with ERTS, Third ERTS?symposium”, NASA SP-351, NASA Washington, DC, Vol. 1, pp. 309-317, 1973.?

[34] C.F. Jorden, “Leaf area index from quality of light on the forest floor”,?Ecology, Vol. 50(4), pp. 663-666, 1969.?

[35] B. Gao, “NDWI: A normalized difference water index for remote?sensing of vegetation liquid water from space”, Remote Sensing of?Environment, Vol. 58, pp. 257-266, 1996.?

[36] J. Penuelas, J. Pinol, R. Ogaya, I. Lilella, “Estimation of plant water?content by the reflectance water index WI (R900/ R970)”, International?journal of remote sensing, Vol. 18, pp. 2869-2875, 1997.?

[37] Y. J. Kaufman, D. Tanier, “Atmospherically resistant vegetation index?(ARVI) for EOS-MODIS”, IEEE Transaction on Geoscience and?Remote Sensing, Vol. 30(2), pp. 261-270, 1992.?

[38] A.R. Huete, “A soil adjusted vegetation index (SAVI)”, Remote?Sensing of Environment, Vol. 71, pp. 158-182, 2000.?

[39] A.A. Gitelson, Y. J. Kaufman, R. Stark, D. Rundquist, “Novel?algorithm for remote estimation of vegetation fraction”, Remote?Sensing of Environment, vol. 80, pp. 76-87, 2002.?

[40] J. Penuelas, F. Baret, I. Filella, “Semi empirical indices to assess?carotenoids/ chlorophyll a ratio from leaf spectral reflectance”,?Photosynthetica, Vol. 31, pp. 221-230, 1995.?

[41] G. A. Blackburn, “Spectral indices for estimating photosynthetic?pigment concentration: A test using senescent tree leaves”,?International journal of remote sensing, Vol. 19, pp. 657-675, 1998.?

[42] G. A. Blackburn, “Quantifying chlorophyll and carotenoids from leaf?to canopy scale: An evaluation of some hyperspectral approaches”,?Remote Sensing of Environment, Vol. 66, pp. 273-285, 1998.?

[43] M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova, Y. Ratikin, “Nondestructive optical detection of pigment changes during leaf senescent?and fruit ripening”, Physiologia Plantarum, Vol. 105, pp. 135-141,?1999.?

[44] M. S. Kim, “The use of narrow spectral bands for improving remote?sensing estimation of fractionally absorbed photosynthetically active?radiation (fAPAR)”, Master Thesis, Department of Geography,?University of Maryland, College Park, 1994.?

[45] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. de Colstoun, J. E.?McMurtrey, “Estimating corn leaf chlorophyll concentration from leaf?and canopy reflectance”, Remote Sensing of Environment, Vol. 74,?pp. 229-239, 2000.?

[46] A. A. Gitelson, G. P. Keydan, M. N. Merzlyak, “Three band model for?noninvasive estimation of chlorophyll, carotenoids and anthocyanin?contents in higher plant leaves”, Geophysical Research Letters, Vol.?33, L11402, 2006.?

[47] A. A. Gitelson, M. N. Merzlyak, O. B. Chivkunova, “Optical?properties and non-destructive estimation of anthocyanin content in?plant leaves”, Photochemistry and Photobiology, Vol. 74(1), pp. 38-45, 2001.?

[48] J. A. Gaman, J. S. Surfus, “Assessing leaf pigment content and activity?with a reflectometer”, New Phytologist, Vol. 143, pp. 105-117, 1999.?

[49] A. K. Van Den Berg, T. D. Perkins, “Non-destructive estimation of?anthocyanin content in autumn auger maple leaves”, Horticultural?Science, vol. 40(3), pp. 685-685, 2005.?

[50] A. A. Gitelson, Y. Zur, O. B. Chivkunova, M. N. Merzlyak, “Assessing?carotenoid content in plant leaves with reflectance spectroscopy,?Photochemistry and Photobiology, Vol. 75(3), pp. 272-281, 2002.?

[51] A. R. Hunt, B. N. Rock, “Detection of changes in leaf water content?using near- and middle-infrared reflectance”, Remote Sensing of?Environment, Vol. 30, pp. 43-54, 1989.?

[52] B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, T.?Hoshizaki, “Detection of forest damage”, BioScience, Vol. 36(7), pp.?439-445, 1986.?

[53] J. A. Gamon, L. Serrano, J. S. Surfus, “The photochemical reflectance?index: An optical indicator of photosynthetic radiation-use efficiency?across species, functional types, and nutrient level”, Oecologia, Vol.?112, pp. 492-501, 1997.?

[54] D. N. H. Horler, M. Dockray, J. Barber, “The red-edge of plant leaf?reflectance”, International journal of remote sensing, Vol. 4, pp. 273-288, 1983.?




News / 相關(guān)新聞 More
2024 - 09 - 30
沿海鹽沼生態(tài)系統(tǒng)是一種位于海洋與陸地交界處的生物多樣性豐富的獨特生態(tài)環(huán)境。它不僅具有重要的生態(tài)功能,在碳儲存、環(huán)境凈化和防風(fēng)護(hù)堤方面發(fā)揮著重要作用,還對人類社會活動有著極大的支持和調(diào)節(jié)作用。氨氣是大氣環(huán)境中含量豐富的堿性氣體,其在沿海鹽沼生態(tài)系統(tǒng)中的作用不可忽視。但是,過量的氨氣輸入也給其帶來了一系列問題。沿海鹽沼生態(tài)系統(tǒng)NH3源和匯研究背景介紹氨(NH3)是大氣中含量最多的堿性氣體。在氣溶膠形成中發(fā)揮重要作用,而氣溶膠會對人類健康產(chǎn)生不利影響,同時會降低能見度,改變地球輻射平衡,并通過大氣沉積促進(jìn)活性氮(Nr)的全球再分配。農(nóng)業(yè)集約化是NH3的主要人為來源,導(dǎo)致進(jìn)入生物圈的Nr增加一倍。NH3的其他來源包括工業(yè)過程、車輛排放及土壤和海洋的揮發(fā)。農(nóng)業(yè)和城市源通過大氣沉積過程直接或間接排放NH3,其會改變鹽沼的結(jié)構(gòu)和功能。此外,大氣沉積過程是NH3進(jìn)入沿海水域的主要途徑, NH3沉積到敏感的...
2024 - 09 - 30
棕色碳(BrC)是一類在近紫外和可見光區(qū)吸收光輻射的有機碳,不僅對大氣造成輻射強迫,更是對大氣光化學(xué)反應(yīng)速率有著重要作用。BrC不僅影響著大氣的輻射平衡和氣候變化,還直接關(guān)系到區(qū)域空氣質(zhì)量與公眾健康。本論深入探討了棕色碳發(fā)色團(tuán)的光學(xué)性質(zhì)與化學(xué)成分之間的密切關(guān)聯(lián),為更準(zhǔn)確地評估其在環(huán)境系統(tǒng)中的行為和影響提供了科學(xué)依據(jù)。棕色碳發(fā)色團(tuán)光學(xué)性質(zhì)和化學(xué)成分之間的聯(lián)系背景介紹棕色碳(BrC)是大氣有機氣溶膠的重要組分,在紫外到近紅外波段具有較強的吸光能力,對全球氣候變化和大氣化學(xué)過程具有重要影響。BrC結(jié)構(gòu)復(fù)雜、種類眾多、來源廣泛。大量研究表明生物質(zhì)燃燒、煤燃燒、機動車尾氣、生物排放以及二次有機氣溶膠等是BrC的重要來源。芳香族揮發(fā)性有機化合物,如苯同系物和衍生物,也可能是BrC發(fā)色團(tuán)的重要前體。但是,不同源排放的BrC進(jìn)入大氣后,受到復(fù)雜的大氣化學(xué)過程,其光學(xué)性質(zhì)和化學(xué)結(jié)構(gòu)會發(fā)生很大的變化。研究方法...
2024 - 06 - 11
摘要土壤有機質(zhì)(SOM)在全球碳循環(huán)中起著非常重要的作用,而高光譜遙感已被證明是一種快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性質(zhì)的光譜響應(yīng),SOM預(yù)測模型的準(zhǔn)確性和時空可遷移性較差。本研究旨在通過減少土壤物理性質(zhì)對光譜的耦合作用來提高SOM預(yù)測模型的時空可遷移性?;谛l(wèi)星高光譜圖像和土壤物理變量,包括土壤濕度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光譜校正模型。選取中國東北的兩個重要糧食產(chǎn)區(qū)作為研究區(qū)域,以驗證光譜校正模型和SOM含量預(yù)測模型的性能和可遷移性。結(jié)果表明,基于四階多項式和XG-Boost算法的土壤光譜校正具有優(yōu)異的準(zhǔn)確性和泛化能力,幾乎所有波段的殘余預(yù)測偏差(RPD)均超過1.4?;赬G-Boost校正光譜的SOM預(yù)測精度最 高,決定系數(shù)(R2)為0.76,均方根誤差(RMSE)為5.74 g/kg,...
2024 - 05 - 20
北京,這座擁有千年歷史的城市,見證了無數(shù)歷史的變遷和現(xiàn)代文明的飛躍。然而,隨之而來的是空氣質(zhì)量問題,尤其是由機動車尾氣排放引發(fā)的大氣污染。據(jù)相關(guān)研究顯示,機動車尾氣中含有大量的有害物質(zhì),包括一氧化碳、氮氧化物、揮發(fā)性有機化合物以及細(xì)顆粒物等,這些污染物不僅對人體健康構(gòu)成威脅,還會導(dǎo)致城市霧霾的形成,影響城市的視覺美感和居民的生活質(zhì)量。在眾多污染物中,氨氣作為一種典型的堿性氣體,其來源多樣,包括農(nóng)業(yè)活動、工業(yè)生產(chǎn)、生活垃圾處理等。在北京市城區(qū)車輛排放是否是氨氣的主要來源?據(jù)此,來自中國科學(xué)院大氣物理研究所的研究團(tuán)隊進(jìn)行了相關(guān)研究。北京城區(qū)NH3排放源-機動車尾氣背景介紹氨氣是大氣中重要的堿性氣體,在中和酸性氣體,形成二次氣溶膠方面發(fā)揮著重要作用。NH3在大氣中滯留時間短,因此NH3濃度日變化顯著。一般特征為在早上大約07:00~10:00,NH3濃度到達(dá)峰值。然而以前的研究局限于單一季節(jié),無...
Copyright ?2018-2023 北京理加聯(lián)合科技有限公司
犀牛云提供企業(yè)云服務(wù)

北京理加聯(lián)合科技有限公司

地址:北京市海淀區(qū)安寧莊東路18號光華創(chuàng)業(yè)園5號樓(生產(chǎn)研發(fā))
          光華創(chuàng)業(yè)園科研樓四層
電話:13910499761 13910499762 010-51292601
傳真:010-82899770-8014
郵箱:info@li-ca.com
郵編:100085

 

地址:深圳市寶安區(qū)創(chuàng)業(yè)二路玖悅雅軒商業(yè)裙樓3層瑞思BEEPLUS 3029室 手機:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名稱:
  • *
  • 地址:
  • *
  • 電話:
  • *
  • 傳真:
  • *
  • 電子郵箱:
  • *
  • 郵政編碼:
  • *
  • 留言主題:
  • *
  • 詳細(xì)說明:
  • *
在線留言
關(guān)注我們
  • 官方微信
  • 官方手機端
友情鏈接:
X
1

QQ設(shè)置

3

SKYPE 設(shè)置

4

阿里旺旺設(shè)置

等待加載動態(tài)數(shù)據(jù)...

等待加載動態(tài)數(shù)據(jù)...

5

電話號碼管理

  • 010-51292601
6

二維碼管理

等待加載動態(tài)數(shù)據(jù)...

等待加載動態(tài)數(shù)據(jù)...

展開
另类老妇性BBWBBW,欧美搡BBBBB搡BBBBB,女BBBB槡BBBB槡BBBB,四川少妇BBW搡BBBB槡BBBB,凸凸凹BBWBBWBBWBBW,娇BBB搡BBBB揉BBBB,四川少妇搡BBW搡BBBB